
Power of controlled insertion and deletion

Lila Kari

Academy of Finland and Department of Mathematics1

University of Turku

20500 Turku

Finland

Abstract

The paper investigates classes of languages obtained as the closure of

certain atomic languages under some insertion and deletion operations.

Each of the classes studied is closed under an insertion operation, a dele-

tion operation and an iterative insertion one. The operations are con-

trolled and have been chosen as stated in order to allow an increase as

well as a decrease of the length of the words in the operands. The iterative

operation has been included in each class to provide an infinite growth of

the strings.

1 Introduction

Language operations have been studied intensively in formal language theory.
One of the main goals of the theory is to represent a family of languages as the
closure of some atomic languages with respect to some operations. The theory
of abstract families of languages (AFL) deals with operations, many operations
appear in formal language theory applications, and so on.

This paper analyzes the generative power of some insertion and deletion op-
erations defined in [4]. The operations are generalizations of catenation and
left/right quotient and among them we can list insertion, parallel insertion,
controlled insertion, scattered insertion, deletion, parallel deletion, controlled
deletion, scattered deletion. For a comprehensive study of these and other op-
erations as well as of various related topics see [4], [5], [6], [7], [8], [10].

The operations needed in our study are defined in Section 2 and some closure
properties necessary for our investigation are proved in Section 3.

In Section 4 we focus on classes of languages which contain the singleton let-
ters, the empty word, the empty set and are closed under an insertion operation,

1The work reported here is part of the project 11281 of the Academy of Finland

a deletion operation and an iterative insertion one. Finally, the mirror image
operator and the union with the empty word are added for technical reasons.

Our results have the following uniform structure. The classes obtained prop-
erly contain the family of regular languages. Moreover, the class whose opera-
tions are sequential is properly included in the family of context-free languages.
The one whose operations are parallel is included in the family of context-
sensitive languages and contains non-context-free languages.

Let Σ be a finite alphabet and Σ∗ the set of all words over Σ, including
the empty word λ. The length of a word w ∈ Σ∗ is denoted by lg(w). The
left quotient of a word u by a word v is defined by ”v\u = w iff u = vw”, and
the right quotient u/v is defined analogously. The mirror image of a word u is
denoted by Mi(u). For two languages L1, L2 over Σ,

L1 − L2 = {u| u ∈ L1 and u 6∈ L2}, Lc
1 = Σ∗ − L1.

In the sequel REG, CF, CS will denote the family of regular, context-free and
context-sensitive languages respectively. For unexplained formal language no-
tions the reader is referred to [9].

2 Controlled insertion and deletion

The simplest and most natural generalization of catenation is the sequential
insertion (see [4]). Given two words u and v, instead of catenating v at the
right extremity of u, the new operation inserts v in an arbitrary place in u.
Notice that the sequential insertion of two words is a finite set of words and
that their catenation is an element of this set. However, catenation cannot be
obtained as a particular case of sequential insertion because we cannot force
the insertion to take place at the right extremity of the word. This brings
up the notion of control: each letter determines what can be inserted after it.
The catenation operation will then be obtained by using a particular case of
controlled insertion.

Let L be a language over the alphabet Σ. For each letter a of the alphabet,
let ∆(a) be a language over an alphabet Σa. The ∆- controlled insertion into
L (shortly, insertion), is defined as:

L< ∆ =
⋃

u∈L

(u< ∆), where u< ∆ = {u1avau2| u = u1au2, va ∈ ∆(a)}.

The function ∆ : Σ−→2Σ′∗

, where Σ′ =
⋃

a∈Σ Σa is called a control function.
The insertion is an (n + 1)-ary operation, where n is the arity of Σ, the

domain of the control function.
The catenation can be now expressed as L1L2 = h(L1#< ∆), where ∆(#) =

L2, ∆(a) = ∅, ∀a ∈ Σ and h is the morphism defined by h(#) = λ, h(a) = a,
∀a ∈ Σ.

Note that the empty word does not occur in the result of the insertion.
Indeed, the notion of control implies the presence of at least one letter in the
word in which the insertion is performed. Therefore we have

(L1< ∆) = (L1 − {λ})< ∆.

In the following we shall define a parallel variant of insertion.
Let L be a language over Σ and ∆ : Σ−→2Σ′∗

a control function satisfying
∆(a) 6= ∅, ∀a ∈ Σ. The ∆-controlled parallel insertion into L (shortly, parallel
insertion) is defined as:

L< ∆ =
⋃

u∈L

(u< ∆), where

u< ∆ = {a1v1a2v2 . . . akvk| u = a1 . . . ak, k ≥ 1, ai ∈ Σ,

and vi ∈ ∆(ai), 1 ≤ i ≤ k}.

For example, if L = {cd, λ, bdc, f2} and ∆ is the control function defined by
∆(c) = {a}, ∆(d) = {λ, e}, ∆(b) = {λ}, ∆(f) = {f} then,

L< ∆ = {cad, cade, bdca, bdeca, f4}.

Note that in the previous definition the control function cannot have the
empty set as its value. This condition has been introduced because of the
following reasons. If there would exist a letter a ∈ Σ such that ∆(a) = ∅, then all
the words u ∈ L which contain a would give u< ∆ = ∅. This means that these
words would not contribute to the result of the parallel insertion. Consequently,
we can introduce, without loss of generality, the condition ∆(a) 6= ∅, ∀a ∈ Σ.

For each of the above mentioned variants of insertion, a ”dual” deletion
operation can be also considered. Let L be a language over the alphabet Σ. For
each letter a of the alphabet, let ∆(a) be a language over Σ. The ∆-controlled
deletion from L (shortly, deletion) is defined as:

L >∆ =
⋃

u∈L
(u >∆), where

u >∆ = {u1au2 ∈ Σ∗| u = u1avu2 for some
u1, u2 ∈ Σ∗, a ∈ Σ and v ∈ ∆(a)}.

The function ∆ : Σ−→2Σ∗

is called a control function.
For example, if L = {abba, aab, bba, aabb} and ∆ is the control function

∆(a) = b, ∆(b) = a, then L >∆ = {aba, abb, aa, bb, aab}. As a language opera-
tion, the ∆-controlled deletion has the arity card(Σ) + 1.

Notice that if λ belongs to L, λ does not contribute to the result of the
deletion:

L >∆ = (L − {λ}) >∆, ∀ L ⊆ Σ∗, ∆ : Σ−→2Σ∗

.

A parallel variant of the deletion will be defined in the sequel. Let u ∈ Σ∗

be a word and ∆ : Σ−→2Σ∗

be a control function which does not have ∅ as its
value. The set u >∆ is obtained by finding all the non-overlapping occurrences
of ava, va ∈ ∆(a), in u, and by deleting va from them. Here va may be different
for different occurrences of a in the same word. Between any two occurrences of
words of the type ava, va ∈ ∆(a), in u, no other words of this type may remain.

Let L be a language over an alphabet Σ and ∆ : Σ−→2Σ∗

be a control
function such that ∆(a) 6= ∅, ∀a ∈ Σ. The ∆- controlled parallel deletion from
L (shortly, parallel deletion) is formally defined as:

L >∆ =
⋃

u∈L
(u >∆), where

u >∆ = {u1a1u2a2 . . . ukakuk+1| k ≥ 1, aj ∈ Σ, 1 ≤ j ≤ k,
ui ∈ Σ∗, 1 ≤ i ≤ k + 1, and there exist vi ∈ ∆(ai), 1 ≤ i ≤ k,
such that u = u1a1v1 . . . ukakvkuk+1, where
{ui} ∩ Σ∗(∪a∈Σa∆(a))Σ∗ = ∅, 1 ≤ i ≤ k + 1.}

The last line is a formalization of the condition that no word ava, va ∈ ∆(a),
may occur in u between aivi, 1 ≤ i ≤ k, vi ∈ ∆(ai).

For example, if L = {abababa, a3b3, abab} and ∆(a) = b, ∆(b) = a, then

L >∆ = {a4, ab3, a2b2, ab2a2, a3b, a3b2, a2, ab2}.

The arity of the ∆-controlled parallel deletion is card(Σ) + 1.
As in the case of deletion, if the empty word belongs to L, this does not

influence the result of the parallel deletion:

L >∆ = (L − {λ}) >∆, ∀L ⊆ Σ∗, ∆ : Σ−→2Σ∗

, ∆(a) 6= ∅, ∀a ∈ Σ.

3 Closure properties

This section contains some closure properties of the families of the Chomsky
hierarchy under iterated insertion and iterated parallel insertion. These closure
properties will later be used in establishing the position of the investigated
classes of languages relative to the Chomsky hierarchy.

Let L be a language over Σ and ∆ : Σ−→2Σ′∗

be a control function. The
∆-controlled insertion of order k into L is defined as

L<
0∆ = L,

L<
k+1∆ = (L<

k∆)< ∆, k ≥ 0.

The ∆-controlled iterated insertion into L (shortly, iterated insertion) is then
defined as

L<
∗∆ =

∞⋃

k=0

(L<
k∆).

If the control function is ∆ : Σ−→2Σ′∗

and Σ′ −Σ 6= ∅, we put ∆(a) = ∅ for
a ∈ Σ′ − Σ.

Our first results show that the family of regular languages is not closed un-
der iterated insertion, whereas the families of context-free and context-sensitive
languages are closed under it.

Proposition 1 The family of regular languages is not closed under iterated
insertion.

Proof. Take L = {ab} and the control function ∆ defined by:

∆ : {a, b}−→2{a,b}∗ , ∆(a) = ∆(b) = {ab}.

Then L = {ab}<
∗∆ equals the Dyck language of order one, which is not a

regular language.

Proposition 2 The family of context-free languages is closed under iterated
insertion.

Proof. Let L be a language generated by the context-free grammar G = (N, Σ,
S, P) and ∆ : Σ−→2Σ′∗

be a control function. The fact whether or not λ ∈ L
is irrelevant to the result of the insertion into L. Therefore, if λ ∈ L then
L<

∗∆ = [(L − {λ})<
∗∆] ∪ {λ}. Consequently we can assume, without loss

of generality, that L is a λ-free language. Assume that for every a ∈ Σ, the
language ∆(a) is generated by the context-free grammar Ga = (Na, Σa, Sa, Pa),
that the nonterminal sets N, Na, a ∈ Σ, are pairwise disjoint and Σ′ = ∪a∈ΣΣa.
Assume further that the grammar G satisfies the following properties (see [9],
pp.55-56): (i) S does not appear on the right side of any production of P , (ii)
if λ ∈ L(G) the only production of P with λ as the right side is S−→λ, (iii)
all the productions of P (except eventually S−→λ) are of the form A−→BC,
A−→a, A, B, C ∈ N , a ∈ Σ. Assume that also the grammars Ga, a ∈ Σ satisfy
similar properties.

Construct the context-free grammar:

G′ = (N ′, Σ ∪ Σ′, S, P ′),
N ′ = N ∪ (∪a∈ΣNa),
P ′ = P ∪ (∪a∈ΣPa)∪

{A−→aSa| A ∈ N ′, a ∈ Σ, A−→a ∈ P ∪ (∪a∈ΣPa)}.

It is not difficult to prove that L(G′) = L<
∗∆.

Proposition 3 The family of context-sensitive languages is closed under iter-
ated insertion.

Proof. Let L be a language generated by the context-sensitive grammar G =
(N, Σ, S, P) and ∆ : Σ−→2Σ′∗

be a control function. The fact whether or

not λ ∈ L is irrelevant to the result of the insertion into L. Therefore, if
λ ∈ L then L<

∗∆ = [(L − {λ})<
∗∆] ∪ {λ}. Consequently we can assume,

without loss of generality, that L is a λ-free language. Assume that, for every
a ∈ Σ, the language ∆(a) is generated by the context-sensitive grammar Ga =
(Na, Σa, Sa, Pa), that the nonterminal sets N, Na, a ∈ Σ, are pairwise disjoint
and Σ′ = ∪a∈ΣΣa. Assume further that the grammar G satisfies the properties
(i) and (ii) from Proposition 2 together with (iii) every rule of P containing a
terminal letter is of the form A−→a where A ∈ N and a ∈ Σ (see [9], pp.19-20).
Assume that also all Ga, a ∈ Σ satisfy similar properties.

Construct the context-sensitive grammar:

G′ = (N ′, Σ ∪ Σ′, S, P ′),
N ′ = N ∪ (∪a∈ΣNa) ∪ {#},
P ′ = P ∪ (∪a∈Σ(Pa − {Sa−→λ}))∪

{A−→a#Sa#| A ∈ N ′, a ∈ Σ, A−→a ∈ P ∪ (∪a∈ΣPa)}.

Define now the morphism h : Σ′∗−→Σ′∗ by h(#) = λ, h(a) = a for all a 6= #.
It is not difficult to show that

h(L(G′)) = L<
∗∆,

and that h is a 3-linear erasing with respect to L(G′). We conclude that CS is
closed under iterated insertion.

The iterated parallel insertion can be defined starting from the parallel in-
sertion. The formal definition can be obtained by replacing in the definition
of iterated insertion < with < . Observe, however, that the iterated parallel
insertion can be defined only when the control function ∆, defined on Σ, has as
values languages over the same alphabet Σ.

The following results show that the family of regular and of context-free lan-
guages are not closed under iterated parallel insertion but the family of context-
sensitive languages is closed under it.

Proposition 4 The family of regular and the family of context-free languages
are not closed under iterated parallel insertion.

Proof. Take L = {a} and the control function ∆ defined by ∆(a) = a. Then,
L<

∗∆ = {a2n

| n ≥ 0}, which is not a context-free language.

Proposition 5 The family of context-sensitive languages is closed under iter-
ated parallel insertion.

Proof. Let L be a language generated by the context-sensitive grammar G =
(N, Σ, S, P), and let ∆ : Σ−→2Σ∗

be a control function, ∆(a) 6= ∅, ∀a ∈ Σ.
Assume that, for every a ∈ Σ, the language ∆(a) is generated by the context-
sensitive grammar Ga = (Na, Σa, Sa, Pa), that the nonterminal sets N, Na, a ∈

Σ are pairwise disjoint and that ∪a∈ΣΣa ⊆ Σ. Assume further that all the above
grammars satisfy the requirements of Proposition 3. The fact whether or not
λ ∈ L does not affect the result of parallel insertion into L. If λ belongs to L
then L<

∗∆ = [(L − {λ})<
∗∆] ∪ {λ}.Consequently we will assume, without

loss of generality, that L is λ-free.
We can construct then the following grammar:

G′ = (N ′, Σ′, S′, P ′),
Σ′ = Σ ∪ {$, #},
N ′ = N ∪ (∪a∈ΣNa) ∪ {S′, X},
P ′ = P ∪ (∪a∈Σ(Pa − {Sa−→λ}))∪

{S′−→XS′, S′−→$S#, X$−→$X}∪
{Xa−→aX | a ∈ Σ, λ ∈ ∆(a)}∪
{Xa−→aSaX | a ∈ Σ}∪
{Xa#−→aSa#| a ∈ Σ}∪
{Xa#−→a#| a ∈ Σ, λ ∈ ∆(a)},

where S′, X, $, # are new symbols which do not occur in any of the given al-
phabets.

Intuitively, the grammar G′ works as follows. First, a sentential form of the
type Xn$w#, w ∈ L is generated, where n represents the number of parallel
iterations that will be made into w. X starts to move to the right. When
crossing a letter a, it generates at its left a start symbol of ∆(a). The rules
Sa−→λ are never needed. When X reaches the right extremity of the sentential
form, it disapears.

The language L(G′) is context-sensitive. Indeed, all rules of G′ except the
ones of the form Xa#−→a# are length-increasing. However, the application of
such a rule during a minimal derivation of a word α ∈ L(G) is always preceded
by the application of a rule Xa−→aSaX . If this wouldn’t be the case, our X
would represent a dummy iteration step, in which all the inserted words are
empty. This would further imply that the derivation for α is not minimal, as α
could be obtained with a shorter derivation where the dummy iteration step is
omitted.

The rule Xa−→aSaX increases the length of the sentential form by one and
the rule Xa#−→a# decreases its length by one. Combining these observations
we conclude that the longest sentential form in a terminal derivation of α has
the length smaller than or equal to lg(α) + 1.

Consequently, for all words α ∈ L(G′) the workspace of α is smaller than
2lg(α) and, according to the workspace theorem (see, for example [9], pp.93-97),
L(G′) is a context-sensitive language.

If we consider now the morphism h : (Σ∪ {$, #})∗−→Σ∗, defined by h($) =
h(#) = λ and h(a) = a for a ∈ Σ it can be proved that h(L(G′)) = L<

∗∆.
Clearly, h is 3-linear erasing with respect to the language L(G′).

4 Power of operations

Let S be the smallest class of languages which contains ∅, the language {λ},
the singleton letters and is closed under union with the empty word, mirror
image, insertion, iterated insertion and deletion with singletons. The union
with lambda has been added because λ cannot occur in the result of insertion
and deletion. If this operation wouldn’t have been used, the class S would not
contain any language L with λ ∈ L, except {λ}.

The following result should be compared with the characterization of REG
as the smallest class containing singleton letters, the empty set and closed under
union, catenation and catenation closure.

Theorem 1 S is contained in the family of context-free languages and properly
contains the family of regular languages.

Proof. In order to show that REG ⊆ S we will prove the closure of S under
catenation, union and catenation closure.

Catenation. Let L1, L2 be two languages in S, over the alphabet Σ. If # is
a new symbol which does not belong to Σ, let ∆1, ∆2 be the control functions:

∆1 : {#}−→2Σ∗

, ∆2 : Σ ∪ {#}−→2Σ∗

,
∆1(#) = L2, ∆2(#) = L1, ∆2(a) = ∅, ∀a ∈ Σ.

The following equality holds:

#L1L2 = ({#}< ∆1)< ∆2.

The ∆1-controlled insertion performs the task of catenating the symbol # and
the language L2. The ∆2-controlled insertion inserts the language L1 in the
language #L2, at the right of #, realizing thus the catenation #L1L2.

If we define now the control function:

∆3 : Σ ∪ {#}−→2(Σ∪{#})∗ , ∆3(#) = ∅, ∆3(a) = #, ∀a ∈ Σ,

we have that:

L1L2 = Mi(Mi(#L1L2) >∆3), if λ 6∈ L1 ∩ L2,
L1L2 = Mi(Mi(#L1L2) >∆3) ∪ {λ}, if λ ∈ L1 ∩ L2.

The role of the ∆3-controlled deletion is to delete the symbol # in every word
of Mi(#L1L2). This operation could be performed only after Mi transferred
the symbol # to the right extremity of the words. This transfer was needed
because the first letter of a word cannot be erased by deletion. Finally, Mi was
used again, in order to obtain the desired language from its mirror image.

The catenation L1L2 has been obtained from L1, L2, {#}, ∅ ∈ S by using
the operations union with lambda, mirror image, insertion and deletion with
singletons. Therefore, the class S is closed under catenation.

Union. We will show first that the union of two letters is a language be-
longing to S. Indeed, let {a}, {b} be two singleton letters. Let # be a letter
different from a and b and define the control function ∆4 by:

∆4 : {a, b, #}−→2{a,b,#}∗ , ∆4(#) = a, ∆4(a) = b, ∆4(b) = ∅.

The following relation holds:

{#a, #b} = {#ab} >∆4.

The ∆4- controlled deletion was used to obtain a set of two elements from a
singleton. The additional symbol # was needed in order to make possible the
deletion at the left extremity of the word ab.

If we define now the control function:

∆5 : {a, b, #}−→2{a,b,#}∗ , ∆5(a) = ∆5(b) = #, ∆5(#) = ∅,

we obtain the requested set:

{a, b} = Mi({#a, #b}) >∆5.

The role of the ∆5-controlled deletion was to delete the symbol # and the mirror
image transferred it to the right extremity of every word, to allow its deletion.
Observe that another application of Mi is not needed.

As we have obtained the set {a, b} starting from the sets ∅, #, a, b and
{#ab} (which belongs to S as S is closed under catenation) and applying only
insertion, deletion with singletons and mirror image, we conclude that it belongs
to S.

Returning now to the general case, let L1, L2 be two languages in S, over
the alphabet Σ. Let #1, #2 be two symbols which do not occur in Σ and ∆6, ∆7

be the control functions:

∆6 : {#1, #2}−→2Σ∗

, ∆7 : Σ ∪ {#1, #2}−→2{#1,#2}
∗

,
∆6(#1) = L1, ∆7(#1) = #2,
∆6(#2) = L2, ∆7(#2) = #1, ∆7(a) = ∅, ∀a ∈ Σ.

The following equality is now obvious:

#1#2L1 ∪ #2#1L2 = ({#1, #2}< ∆6)< ∆7.

Indeed, the ∆6-controlled insertion inserts L1 after #1 and L2 after #2, yielding
thus #1L1 ∪ #2L2. The ∆7-controlled insertion inserts then #2 after #1 and
#1 after #2.

If we further define the control functions :

∆8 : Σ ∪ {#1, #2}−→2(Σ∪{#1,#2})
∗

, ∆9 : Σ ∪ {#2}−→2(Σ∪{#2})
∗

,

∆8(a) = #1, ∀a ∈ Σ ∪ {#2}, ∆9(a) = #2, ∀a ∈ Σ,
∆8(#1) = ∅, ∆9(#2) = ∅,

then

L1 ∪ L2 = Mi((Mi(#1#2L1 ∪ #2#1L2) >∆8) >∆9),
if λ 6∈ L1 ∪ L2,

L1 ∪ L2 = Mi((Mi(#1#2L1 ∪ #2#1L2) >∆8) >∆9) ∪ {λ},
if λ ∈ L1 ∪ L2.

The role of the ∆8-controlled deletion was to erase the symbol #1 and that of
the ∆9-controlled deletion to erase #2. We needed two deletions because only
deletion with singletons had to be used. The role of the mirror image operator
has been similar as in the previous cases.

We have obtained L1∪L2 starting with the languages L1, L2, #1, #2, ∅ in S
and with the set {#1, #2} (which consists of two letters and therefore belongs
to S) by applying only insertion, mirror image, union with λ and deletion with
singletons. Therefore L1 ∪ L2 is in S, that is, S is closed under union.

Catenation closure. Let L be a language in S, over the alphabet Σ, and let
be a letter which does not belong to Σ. If ∆10 is the control function defined
as:

∆10 : Σ ∪ {#}−→2Σ∗

, ∆10(#) = L, ∆10(a) = ∅, ∀a ∈ Σ,

then
#L∗ = {#}<

∗∆10.

Indeed, the ∆10-controlled insertion inserts words from L only to the right of #,
assuring that the insertion amounts to catenation. Defining finally the control
function

∆11 : Σ ∪ {#}−→2(Σ∪{#})∗ , ∆11(a) = #, ∀a ∈ Σ, ∆11(#) = ∅,

the catenation closure of L will be

L∗ = Mi(Mi(#L∗) >∆11) ∪ {λ}.

With the help of the mirror image operator, which puts # to the end of words,
the ∆11-controlled deletion erases the letter # from all the words in #L∗. Fi-
nally, Mi restores the form of the words from L.

We have obtained L∗ starting from L, ∅ and {#} in S and using iterated
insertion, mirror image, union with λ and deletion with singletons. Therefore,
S is closed under catenation closure.

As S contains the singleton letters and is closed under catenation, union
and catenation closure, it follows that it contains all the regular languages.
According to Proposition 1 the inclusion is proper.

The inclusion S ⊆ CF follows from the fact that CF is closed under mirror
image, insertion, deletion with singletons (see [4]) and iterated insertion (see
Proposition 2).

In the following we will be able to prove that the inclusion S ⊆ CF is actually
strict. For this, an auxiliary result is needed.

Lemma 1 (Pumping lemma) For each language L in S there exists a natural
n0 such that every word w ∈ L with lg(w) > n0 possesses a decomposition
w = w1w2w3 satisfying:

• w2 = w′
2w

′′
2 ,

• there exists a nonempty word u such that w1w
′
2u

kw′′
2 w3 ∈ L for all k ≥ 0.

Proof. The constant n0 is defined by structural induction, based on the con-
struction of L using the operations of S.

If L equals a singleton letter, the empty set or the empty word, we define
n0 = 1. The operations ∪{λ}, and Mi do not change n0.

We now consider, in succession, L< ∆, L<
∗∆ and L >∆ and assume

that L and ∆(a), a ∈ Σ, satisfy the lemma with the constants n, respectively
na, a ∈ Σ.

Insertion. Take n0 = 2n+max{na|a ∈ Σ}+1 and let w be a word in L< ∆,
w = w1w2w3 with lg(w2) > n0.

Being a result of the insertion, the word w is of the form w = α1awaα2,
where wa ∈ ∆(a). One of the following cases holds:

(a) the word w2 is a subword of α1 or α2 or of wa. In this case the lemma
holds as we can directly apply the induction hypothesis.

(b) the word w2 is a subword of α1a and then we can apply the induction
hypothesis for the part of w2 which lies in α1.

(c) we have that either

– the length of the portion of w2 in α1a is greater than n + 1

– the length of the portion of w2 in wa is greater than na

– the length of the portion of w2 in α2 is greater than n.

(If none of these cases happens, the length of w2 becomes smaller than or equal
to n – a contradiction.) In all cases, by applying the induction hypohesis we are
able to pump inside the portion of w2 which lies inside α1, wa, respectively α2.

Iterated insertion. Take n0 = 2n + max{na| a ∈ Σ} + 1 and a word w in
L<

∗∆ be of length greater than n0. There exists a natural k ≥ 0 such that
w ∈ L<

k∆. We shall show that w satisfies the requirements of the lemma by
induction on k, the number of iterations.

If k = 0 then w ∈ L and the lemma holds.
Assume now that the lemma holds for words in L<

k∆ and let w = w1w2w3

be a word in L<
k+1∆, of length greater then n0. Then, w is of the form

w = α1awaα2 where α1aα2 belongs to L<
k∆ and wa to ∆(a).

If w2 is a subword of α1, wa or α2 then we can directly apply the induction
hypothesis.

If w2 is a subword of α1a we can apply the induction hypothesis for the
portion of w2 which lies in α1.

If w2 overlaps with wa and α1a then we can choose u = wa. The words
obtained by pumping wa near a will belong to the L<

∗∆ according to the
definition of the iterated insertion.

If w2 overlaps with wa and α2 then again we can choose u = wa (pump wa

between a and α2).
Deletion. Take n0 = 2n+1 and take w = w1w2w3 a word in L >∆ of length

greater than n0. Then there exists a word w′ ∈ L, w′ = α1awaα2, wa ∈ ∆(a)
such that w = α1aα2.

If w2 is a subword of α1 or of α2, we are through.
If w2 is a subword of α1a the we can apply the induction hypothesis to the

portion of w2 which lies in α1.
Otherwise, either the overlapping portion of w2 and α1 is longer than n or

the overlapping portion of w2 and α2 is longer than n. In both cases we can
apply the induction hypothesis to the overlapping portion.

Languages in S are constructed from certain atomic ones by applying some
operations. Consequently, to every language L in S, a formula describing the
”construction history” of L can be associated. Such a formula is analogous to
a regular expression. Observe that the definition of the constant in Lemma 1
is based on this formula. Analogous constants for regular languages are cus-
tomarily defined in terms of the automaton, rather than in terms of the regular
expression.

Proposition 6 The family S is strictly included in the family of context-free
languages.

Proof. Consider the language L = {anbn| n ≥ 0}. L is a context-free language
but it does not belong to the family S.

Indeed, if L would belong to S, there would exist a constant n0 such that
every word w ∈ L with lg(w) > n0 possesses a decomposition satisfying the
requirements of Lemma 1.

The word u ∈ {a, b}+ from Lemma 1 that can be pumped into w, producing
words that still belong to L, can be of one of the following forms:

• u = ar, r > 0. In this case, by pumping u into w we obtain words in which
the number of occurrences of a is arbitrarily large whereas the number of
occurrences of b is constant – a contradiction with the form of words in L.

• u = br, r > 0. A similar argument proves that this case also leads to a
contradiction.

• u contains both letters a and b. By pumping u into w we are able to
produce words where the occurrences of a’s and b’s alternate arbitrarily
many times – a contradiction with the definition of L.

As all the possible ways of choosing u led to contradictions, we conclude that
our initial assumption that the language L belongs to S was false.

Theorem 2 The family S is not closed under intersection.

Proof. We will prove that there exist two languages L1, L2 ∈ S whose intersec-
tion is not a context-free language. As, according to Theorem 1, S ⊆CF, this
will imply that S is not closed under intersection.

Let L1 be the language defined by:

L1 = {#}<
∗∆1,

where ∆1 is the control function ∆1 : {#, a, b, d}−→2{#,a,b,d}∗ defined by:

∆1(#) = {a#b#, b#a#, d#}, ∆1(a) = ∆1(b) = ∆1(d) = ∅.

Claim. L1 = {w ∈ #(Σ#)∗| Na(w) = Nb(w)}, where Σ = {a, b, d}.

” ⊆ ” This inclusion is obvious, as we insert an equal number of a’s and b’s
at every iteration step.

” ⊇ ” We will show by induction on n that if w is a word in the right member
of the equality satisfying Na(w) = Nb(w) = n, then w ∈ L1.

n = 0. Let w = #(d#)p, where p ≥ 0. Then we have:

w ∈ {#}<
p∆1 ⊆ {#}<

∗∆1,

as w is obtained by p insertions of d# next to the first symbol #.
n 7→ n + 1. Assume the statement true for numbers up to n and let w be a

word in #(Σ#)∗, containing n + 1 letters a and n + 1 letters b. The word w is
of one of the forms:

w = #αa#(d#)mb#β, m ≥ 0, α, β ∈ (Σ#)∗,
w = #αb#(d#)ma#β, m ≥ 0, α, β ∈ (Σ#)∗.

Assume that the first case holds, the other one being similar. Consider the
word w′ = #αβ. According to the induction hypothesis, w′ is a word in L1.
Therefore we have:

w ∈ {w′}<
m+1∆1 ⊆ {#}<

∗∆1.

Indeed, w is obtained from w′ by inserting first a#b# at the right extremity of
α and then inserting m times d# at the right extremity of a#. We conclude
that w ∈ L1 and the claim is proved.

If we define now the control function ∆2 : {#, a, b, d}−→2{#,a,b,d}∗ by:

∆2(#) = {d#b#, b#d#, a#}, ∆2(a) = ∆2(b) = ∆2(d) = ∅,

one can prove, as before, that:

L2 = {#}<
∗∆2 = {w ∈ #(Σ#)∗| Nb(w) = Nd(w)}.

It is easy to show that:

L1 ∩ L2 = {w ∈ #(Σ#)∗| Na(w) = Nb(w) = Nd(w)},

which is not a context-free language. As L1 and L2 belong to S ⊆CF, it follows
that S is not closed under intersection.

The remaining part of this section will deal with similar questions concerning
the generative power, in case all insertions and deletions are replaced with their
parallel counterparts. The families thus obtained properly contain REG and
are contained in CS. Their relation with the class of context-free languages as
well as their relation with S remains open.

Let P be the smallest class of languages which contains the empty set, the
language {λ}, the singleton letters and is closed under mirror image, union
with λ, parallel insertion, iterated parallel insertion and parallel deletion with
singletons.

Theorem 3 P is contained in the family of context-sensitive languages and
properly contains the family of regular languages.

Proof. The fact that P contains REG can be shown using the proof of Theorem
1. The control functions that appear in the proof have the value ∅ for some
arguments. However, in the case of parallel insertion (parallel deletion), the
control function cannot have the empty set as its value. We will modify the
functions as follows. Let $ be a new symbol which does not occur in any of the
alphabets used in Theorem 1. For every insertion and iterated insertion (resp.
deletion) the control function gets the value λ (resp. the value $) for all those
letters for which it had previously the value ∅. After this change, one notices
that if we replace everywhere in the proof the insertion, iterated insertion, dele-
tion with singletons with parallel insertion, iterated parallel insertion, parallel
deletion with singletons respectively, the same relations hold. This happens be-
cause, in all the cases occurring in the proof of Theorem 1, the parallel insertion
or deletion will amount in fact to insertion or deletion.

According to Proposition 4, the inclusion REG⊆ P is proper.
The inclusion of P in CS follows from the fact that CS is closed under mirror

image, parallel insertion, parallel deletion with singletons (see [4]) and iterated
parallel insertion (see Proposition 5).

Let P ′ be the smallest class of languages containing the empty set, {λ}, the
singleton letters and closed under mirror image, union with λ, parallel insertion,
iterated parallel insertion and parallel deletion. The difference between P and
P ′ is that, in the case of P , the parallel deletion is restricted to the case where
only singletons are erased.

Theorem 4 P ′ is a Boolean algebra properly containing the family of regular
languages.

Proof. The family P is included in P ′, therefore P ′ properly contains the family
of regular languages.

It will be showed in the following that P ′ is closed under complementation.
Let L be a language in P ′, over the alphabet Σ, and let #, $ be letters which
do not occur in Σ. Then,

{#$} ∪ #Lc$$ = #Σ∗$$# >∆1,

where ∆1 is the control function:

∆1 : Σ ∪ {#, $}−→2(Σ∪{#,$})∗ , ∆1(#) = L$, ∆1(a) = ∆1($) = #, ∀a ∈ Σ.

Indeed, given a word w = #u$$# ∈ #Σ∗$$#, the ∆1-controlled parallel dele-
tion:

• if u ∈ L, erases both u$ and the last #, yielding #$;

• if u ∈ Σ∗ − L, erases only the last #, yielding #u$$.

One can use the control function ∆2 to erase the marker $, where

∆2 : Σ ∪ {#, $}−→2(Σ∪{$,#})∗ ,

∆2(#) = ∆2($) = ∆2(a) = $$, ∀a ∈ Σ.

Consequently we have:

#Lc = ({#$} ∪ #Lc$$) >∆2.

Using now the control function ∆3 to erase the marker #:

∆3 : Σ ∪ {#}−→2(Σ∪{#})∗ , ∆3(#) = ∆3(a) = #, ∀a ∈ Σ,

we obtain,
Lc = Mi(Mi(#Lc) >∆3), if λ ∈ L,
Lc = Mi(Mi(#Lc) >∆3) ∪ {λ}, if λ 6∈ L.

The language #Σ∗$$#, can be obtained from the singleton letters by using
catenation and catenation closure. As, in order to obtain Lc, we have started
from Σ, $, # and L, and we have used only the operations of P ′, we deduce
that Lc ∈ P ′. Being closed under complementation and union, P ′ is closed also
under intersection. Consequently P ′ is a Boolean algebra.

References

[1] R.V.Book, M.Jantzen, C.Wrathall. Monadic Thue systems. Theoretical
Computer Science, 19(1982), pp.231-251.

[2] M.Jantzen. Semi-Thue systems and generalized Church-Rosser properties.
Proc.Fete des Mots, Rouen, France, 1982, pp.60-75.

[3] T.Kimura. Formal description of communication behaviour. Proc. Johns
Hopkins Conf. on Information Sciences and Systems (1979).

[4] L.Kari. On insertion and deletion in formal languages. Ph.D. Thesis, Uni-
versity of Turku, 1991.

[5] L.Kari. Insertion and deletion of words: determinism and reversibility. Lec-
ture Notes in Computer Science, vol.629, 1992, pp.315-327.

[6] L.Kari. Generalized derivatives. Fundamenta Informaticae, vol.18, nr.1,
1993, pp.27-40.

[7] L.Kari, A.Mateescu, Gh.Paun, A.Salomaa. Deletion sets. To appear in Fun-
damenta Informaticae.

[8] L.Kari, A.Mateescu, Gh.Paun, A.Salomaa. On parallel deletions applied to
a word. To appear in RAIRO.

[9] A.Salomaa. Formal Languages. Academic Press, New York, 1973.

[10] L.Sântean. Six arithmetic-like operations on languages. Revue Roumaine
de Linguistique, Tome XXXIII, 1988, Cahiers de linguistique theorique et
applique, Tome XXV, 1988, No.1, Janvier-Juin, pp.65-73.

